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CLASSICAL PHYSICS 
 

CLASSICAL CONSERVATION LAWS 
Conservation of Energy:  The total sum of energy (in 

all its forms) is conserved in all interactions. 

Conservation of Linear Momentum:  In the absence 
of external force, linear momentum is conserved in 
all interactions (vector relation). naustalgic 

Conservation of Angular Momentum:  In the absence 
of external torque, angular momentum is conserved 
in all interactions (vector relation). 

Conservation of Charge:  Electric charge is conserved 
in all interactions. 

Conservation of Mass:  (not valid) 
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MAXWELL’S EQUATIONS 

Gauss’s law for electricity 
0

q
d =

ε∫ E AiÑ  

Gauss’s law for 
magnetism 

0d =∫ B AiÑ  

Faraday’s law Bd
d

dt
Φ

= −∫ E siÑ  

Generalized Ampere’s law 0 0 0
Ed

d I
dt
Φ

= µ ε + µ∫ B siÑ  

 

LORENTZ FORCE LAW 

Lorentz force law:  q q= + ×F E v B  

 

NEWTON’S LAWS 
Newton’s first law:  Law of Inertia  An object in motion 

with a constant velocity will continue in motion unless 
acted upon by some net external force. 

Newton’s second law:  The acceleration a of a body is 
proportional to the net external force F and inversely 
proportional to the mass m of the body.  F = ma 

Newton’s third law:  law of action and reaction  The 
force exerted by body 1 on body 2 is equal and 
opposite to the force that body 2 exerts on body 1. 

 

LAWS OF THERMODYNAMICS 
First law of thermodynamics:  The change in the 

internal energy ∆U of a system is equal to the heat Q 
added to the system minus the work W done by the 
system. 

Second law of thermodynamics:  It is not possible to 
convert heat completely into work without some other 
change taking place. 

Third law of thermodynamics:  It is not possible to 
achieve an absolute zero temperature. 

Zeroth law of thermodynamics:  If two thermal 
systems are in thermodynamic equilibrium with a 
third system, they are in equilibrium with each other. 

 

FUNDAMENTAL FORCES 

FORCE RELATIVE 
STRENGTH 

RANGE 

Strong 1 Short, ~10-15m 

Electroweak   

Electromagnetic 10-2 Long, 1/r2 

Weak 10-9 Short, ~10-15m 

Gravitational 10-39 Long, 1/r2 

 

ATOMIC MASS 
The mass of an atom is it's 

atomic number divided by the 
product of 1000 times 
Avogadro's number. 

atomic number
1000 aN×

 

 

KINETIC ENERGY 
The kinetic energy of a particle (ideal 

gas) in equilibrium with its 
surroundings is: 

3

2

kT
K =  

 

PHASE SPACE 
A six-dimensional pseudospace populated by 

particles described by six position and velocity 
parameters: 

  position: (x, y, z) velocity: (vx, vy, vz) 
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RELATIVITY 
 

WAVELENGTH  λλ   

0 0

1
c = = λν

µ ε
 

1Å = 10-10m 

c = speed of light 2.998 × 108 m/s 
λ = wavelength [m] 
ν = (nu) radiation frequency [Hz] 
Å = (angstrom) unit of wavelength 

equal to 10-10 m 
m = (meters) 

 
Michelson-Morley Experiment indicated that light was 

not influenced by the “flow of ether”. 
 

LORENTZ TRANSFORMATION 
Compares position and time in two coordinate 
systems moving with respect to each other along axis 
x. 

2 21 /

x vt
x

v c

−′ =
−

     
2

2 2

/

1 /

t vx c
t

v c

−′ =
−

 

v = velocity of (x’,y’,z’) system along the x-axis. [m/s] 
t = time [s] 
c = speed of light 2.998 × 108 m/s 

or with   
v
c

β =    and   
2 2

1

1 /v c
γ =

−
 

so that   ( )x x vt′ = γ −     and    ( )/t t x c′ = γ − β  

 

LIGHT WAVEFRONT 
Position of the wavefront of a light source located at 
the origin, also called the spacetime distance. 

2 2 2 2 2x y z c t+ + =  

 
Proper time  T0  The elapsed time between two events 

occurring at the same position in a system as 
recorded by a stationary clock in the system (shorter 
duration than other times).  Objects moving at high 
speed age less. 

Proper length  L0  a length that is not moving with 
respect to the observer.  The proper length is longer 
than the length as observed outside the system.  
Objects moving at high speed become longer in the 
direction of motion. 

 

TIME DILATION 
Given two systems moving at great speed relative to 
each other; the time interval between two events 
occurring at the same location as measured within the 
same system is the proper time and is shorter than 
the time interval as measured outside the system. 

0

2 21 /

T
T

v c

′
=

−
  or   0

2 21 /

T
T

v c
′ =

−
  where: 

T’0, T0 = the proper time (shorter). [s] 
T, T’ = time measured in the other system [m] 
v = velocity of (x’,y’,z’) system along the x-axis. [m/s] 
c = speed of light 2.998 × 108 m/s 

 

LENGTH CONTRACTION 
Given an object moving with great speed, the 
distance traveled as seen by a stationary observer is 
L0 and the distance seen by the object is L', which is 
contracted. 

0 2 21 /

L
L

v c

′
=

−
    where: 

L0 = the proper length (longer). [m] 
L' = contracted length [m] 
v = velocity of (x’,y’,z’) system along the x-axis. [m/s] 
c = speed of light 2.998 × 108 m/s 

 

RELATIVISTIC VELOCITY ADDITION 
Where frame K' moves along the x-axis of K with 
velocity v, and an object moves along the x-axis with 
velocity ux' with respect of K', the velocity of the 
object with respect to K is ux. 

K
K'

v

u'

 

( )21 /
x

x

x

u v
u

v c u

′ +
=

′+
 

If there is uy' or uz' within the K' frame then 

( )21 /

y
y

x

u
u

v c u

′
=

 ′γ − 
  and  

( )21 /
z

z

x

u
u

v c u

′
=

 ′γ − 
 

ux = velocity of an object in the x direction [m/s] 
v = velocity of (x’,y’,z’) system along the x-axis. [m/s] 
c = speed of light 2.998 × 108 m/s 

γ = 2 21/ 1 /v c−  

For the situation where the velocity u with respect to the K 
frame is known, the relation may be rewritten exchanging 
the primes and changing the sign of v. 
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SPACETIME DIAGRAM 
The diagram is a means of representing events in two 
systems.  The horizontal x axis represents distance in the K 
system and the vertical ct axis represents time multiplied by 
the speed of light so that it is in units of distance as well.  A 
point on the diagram represents an event in terms of its 
location in the x direction and the time it takes place.  So 
points that are equidistant from the x axis represent 
simultaneous events. 

x

β

ct c

= 0.25   

Worldline

slope =

ct'

v c= 0.25

v
c

β
=

1

x'
slope = c =

v

= 4

v =

 
A system K’ traveling in the x direction at ¼ the speed of 
light is represented by the line ct’ in this example, and is 
called a worldline.  The line represents travel from one 
location to another over a period of time.  The slope of the 
line is proportional to the velocity.  A  line with a slope of 1 
(dashed line in illustration) indicates travel at the speed of 
light, so no worldline can have a slope less than 1. A 
straight line indicates zero acceleration.  Simultaneous 
events occurring at t = t’ = 0 in the K’ system may be 
represented by points along the x’ axis.  Other 
simultaneous events in the K’ system will be found on lines 
parallel to the x’ axis. 

 

SPACETIME INTERVAL  ∆∆s 
The quantity ∆s2 is invariant between two frames of 
reference with relative movement along the x-axis. 

( ) ( )2 22 2 2s x ct x ct′ ′= − = −  

Two events occurring at different times and locations 
in the K-frame may be characterized by their ∆s2 
quantity. 

( )22 2s x c t∆ = ∆ − ∆  

lightlike - ∆∆s2 = 0:  In this case, ∆x2 = c2∆t2, and the two 
events can only be connected by a light signal. 

spacelike - ∆∆s2 > 0:  In this case, ∆x2 > c2∆t2, and there 
exists a K'-frame in which the two events occur 
simultaneously but at different locations. 

timelike - ∆∆s2 < 0:  In this case, ∆x2 < c2∆t2, and there 
exists a K'-frame in which the two events occur at the 
same position but at different times. Events can be 
causally connected. 

 

MOMENTUM  p 

m=p v         for a photon: 
h
c
ν

=p  

p = momentum [kg-m/s], convertible to [eV/c] by multiplying 
by c/q. 

m = mass of the object in motion [kg] 

v = velocity of object [m/s] 

ν = (nu) the frequency of photon light [Hz] 
c = speed of light 2.998 × 108 m/s 

 

RELATIVISTIC MOMENTUM  p 
m= γp u     where: 

p = relativistic momentum [kg-m/s], convertible to [eV/c] by 
multiplying by c/q. 

γ = 2 21/ 1 /u c−  

m = mass [kg] 

u = velocity of object [m/s] 
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DOPPLER EFFECT 
Given two systems approaching each other at velocity 
v, light emitted by one system at frequency ν0 (nu, 
proper) will be perceived at the higher frequency of ν 
(nu) in the other system. 

0

1

1

+ β
ν = ν

− β
 For two systems receeding from 

each other, reverse the signs. 

ν = (nu) the frequency of emitted light as perceived in the 
other system [Hz] 

ν0 = (nu) the proper frequency of the emitted light (lower 
for approaching systems) [Hz].  Frequency is related 
to wavelength by c = λν. 

β = v/c where v is the closing velocity of the systems (Use a 
negative number for diverging systems.) and c is the 
speed of light 2.998 × 108 m/s 

v = velocity of (x’,y’,z’) system along the x-axis. [m/s] 
 

RELATIVISTIC KINETIC ENERGY  K 
Relativistic kinetic energy is the total energy minus 
the rest energy.  When the textbook speaks of a 50 
Mev particle, it is talking about the particle's kinetic 
energy. 

2 2K mc mc= γ −     where: 

K = relativistic kinetic energy [J], convertible to [eV] by 
dividing by q. 

γ = 2 21/ 1 /v c−  

m = mass [kg] 

c = speed of light 2.998 × 108 m/s 

 

REST ENERGY  E0 

Rest energy is the energy an object has due to its 
mass. 

2
0E mc=  

 

TOTAL ENERGY  E 
Total energy is the kinetic energy plus the rest 
energy.  When the textbook speaks of a 50 Mev 
particle, it is talking about the particle's kinetic 
energy. 

0E K E= +  or 
2E mc= γ     where: 

E = total energy [J], convertible to [eV] by dividing by q. 
K = kinetic energy [J], convertible to [eV] by dividing by q. 
E0 = rest energy [J], convertible to [eV] by dividing by q. 

γ = 2 21/ 1 /v c−  

m = mass [kg] 

c = speed of light 2.998 × 108 m/s 

 

MOMENTUM-ENERGY RELATION 
(energy)2 = (kinetic energy)2 + (rest energy)2 

2 2 2 2 4E p c m c= +     where: 

E = total energy (Kinetic + Rest  energies) [J] 
p = momentum [kg-m/s] 

m = mass [kg] 

c = speed of light 2.998 × 108 m/s 

 

BINDING ENERGY 
• the potential energy associated with holding a system 

together, such as the coulomb force between a hydrogen 
proton and its electron 

• the difference between the rest energies of the individual 
particles of a system and the rest energy of a the bound 
system 

• the work required to pull particles out of a bound system 
into free particles at rest. 

2 2
bound systemB i

i

E m c M c= −∑  

for hydrogen and single-electron ions, the binding 
energy of the electron in the ground state is 

( )

2 4

22
02 4

B

mZ e
E =

πεh
  

EB = binding energy (can be negative or positive) [J] 
m = mass [kg] 

Z = atomic number of the element 

e = q = electron charge [c] 

h  = Planck's constant divided by 2π  [J-s] 
ε0 = permittivity of free space 8.85 × 10-12 F/m 

c = speed of light 2.998 × 108 m/s 

 

LINE SPECTRA 
Light passing through a diffraction grating with 
thousands of ruling lines per centimeter is diffracted 
by an angle θ. 

sind nθ = λ   

The equation also applies to Young's double slit 
experiment, where for every integer n, there is a 
lighting maxima.  The off-center distance of the 
maxima is tany l= θ  

d = distance between rulings [m] 
θ = angle of diffraction [degrees] 

n = the order number (integer) 

λ = wavelength [m] 

l = distance from slits to screen [m] 
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WIEN'S CONSTANT 
The product of the wavelength of peak intensity λ [m] 
and the temperature T [K] of a blackbody.  A 
blackbody is an ideal device that absorbs all 
radiation falling on it. 

3
max 2.898 10 m KT −λ = × ⋅  

 

STEFAN-BOLTZMANN LAW 
May be applied to a blackbody or any material for 
which the emissivity is known. 

4( )R T T= εσ     where: 

R(T) = power per unit area radiated at temperature T 
[W/m2] 

ε = emissivity (ε = 1 for ideal blackbody) 

σ = constant 5.6705 × 10-8 W/(m2· K4) 

T = temperature (K) 

 

PLANCK'S RADIATION LAW 
2

5 /

2 1
( , )

1hc kT

c h
I T

e λ

π
λ =

λ −
    where: 

I(λ, T) = light intensity [W/(m2· λ)] 
λ = wavelength [m] 

T = temperature [K] 

c = speed of light 2.998 × 108 m/s 
h = Planck's constant 6.6260755×10-34 J-s 

k = Boltzmann's constant 1.380658×10-23 J/K 

 
positron – A particle having the same mass as an 

electron but with a positive charge 
bremsstrahlung – from the German word for braking 

radiation, the process of an electron slowing down 
and giving up energy in photons as it passes through 
matter. 

 

PHOTON 
A photon is a massless particle that travels at the 
speed of light.  A photon is generated when an 
electron moves to a lower energy state (orbit). 

Photon energy: E h pc= ν =  [Joules] 

Momentum:  
h

p
c
ν

=  [kg-m/s], convertible to [eV/c] by 

multiplying by c/q. 

Wavelength:  
c

λ =
ν

 [meters] 

h = Planck's constant 6.6260755×10-34 J-s 

ν = (nu) frequency of the electromagnetic wave associated 
with the light given off by the photon  [Hz] 

c = speed of light 2.998 × 108 m/s 

 

PHOTOELECTRIC EFFECT 
This is the way the book shows the formula, but it is a 
units nightmare.   

2
max 0

1
2

mv eV h= = υ − φ     where: 

2
max

1
2

mv  = energy in Joules, but convert to eV for the 

formula by dividing by q. 
eV0 = potential required to stop electrons from leaving the 

metal [V] 

hν = Planck's constant [6.6260755×10-34 J-s] multiplied by 
the frequency of light [Hz].  This term will need to be 
divided by q to obtain eV. 

φ = work function, minimum energy required to get an 
electron to leave the metal [eV] 

 

INVERSE PHOTOELECTRIC EFFECT 

0 max
min

hc
eV h= υ =

λ
    where: 

eV0 = the kinetic energy of an electron accelerated through 
a voltage V0  [eV] 

hν = Planck's constant [6.6260755×10-34 J-s] multiplied by 
the frequency of light [Hz].  This term will need to be 
divided by q to obtain eV. 

λmin = the minimum wavelength of light created when an 
electron gives up one photon of light energy  [m] 

DUANE-HUNT RULE 
6

min
0

1.2398 10

V

−×
λ =  
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ELECTRON ANGULAR MOMENTUM 
from the Bohr model: 

L mvr n= = h     where: 

L = angular momentum [kg-m2/s?] 
m = mass [kg] 

v = velocity [m/s] 

r = radius [m] 

n = principle quantum number 

h  = Planck's constant divided by 2π  [J-s] 

 

a0  BOHR RADIUS  [m] 

The Bohr radius is the radius of the orbit of the 
hydrogen electron in the ground state (n=1): 

2
0

0 2

4

e

a
m e
πε

=
h

 and for higher 
states (n>1): 

2
0nr a n=  

a0, rn = Bohr radius 5.29177×10-11 m, quantized radius [m] 
ε0 = permittivity of free space 8.85 × 10-12 F/m 

me = electron mass 9.1093897×10-31 [kg] 

e = q = electron charge [c] 

n = principle quantum number 

h  = Planck's constant divided by 2π  [J-s] 

 

IMPACT PARAMETER  b 

The impact parameter b is the distance that a 
bombarding particle deviates from the direct-hit 
approach path, and is related to the angle θ at which it 
will be deflected by the target particle. 

2
1 2

0

cot
8 2

Z Z e
b

K
θ

=
πε

 

b = direct path deviation [m] 
Z1 = atomic number of the incident particle 

Z2 = atomic number of the target particle 

e = q = electron charge [c] 

ε0 = permittivity of free space 8.85 × 10-12 F/m 

K = kinetic energy of the incident particle Z1 

θ = angle of particle Z1 deflection or scattering 

 

HEAD-ON SCATTERING 

When a particle of kinetic energy K and atomic 
number Z1 is fired directly at the nucleus, it 
approaches to rmin before reversing direction.  The 
entire kinetic energy is converted to Coulomb 
potential energy.  Since rmin is measured to the center 
of the particles, they will just touch when rmin is the 
sum of their radii. 

2
1 2

min
04

Z Z e
r

K
=

πε
 

rmin = particle separation (measured center to center) at the 
time that the bombarding particle reverses direction 
[m] 

other variables are previously defined 

 

COMPTON EFFECT 
The scattering of a photon due to collision with a 
single electron results in a new wavelength λ' and a 
directional change of ∠θ and is described by the 
following relation: 

( )1 cos
h

mc
′∆λ = λ − λ = − θ  

scattered photon

p = h
l'

E = hn'

photon

E = hn
p = h

l electron at rest

Ei = mc 2

θ

φ

recoil electron

Ef = Ee

 
The φ relations come from the conservation of 
momentum: 

: cos cosx e

h h
p p= θ + φ

′λ λ
 

: sin siny e

h
p pθ = φ

′λ
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RUTHERFORD SCATTERING 

A particle of kinetic energy K and atomic number Z1 
when fired at a target film of thickness t and atomic 
number Z2, will be deflected by an angle θ. 

( ) ( )

2 2 22
1 2

2 2 4
016 4 sin / 2

iN nt e Z Z
N

r K

 
θ =  πε θ 

 

N(θ) = number of particles scattered per unit area [m-2] 
θ = angle of particle Z1 deflection or scattering 

Ni = total number of incident particles [kg] 

n = number of atoms per unit volume [m-3]  A M

g

N N
n

M
ρ

=  

where ρ is density [g/m3], NA is Avogadro's number, NM is the 
number of atoms per molecule, and MG is the gram-molecular 
weight [g/mole]. 

t = thickness of the target material [m] 

e = q = electron charge [c] 

ε0 = permittivity of free space 8.85 × 10-12 F/m 

Z1 = atomic number of the incident particle 

Z2 = atomic number of the target particle 

r = the radius at which the angle θ is measured [m] 

K = kinetic energy of the incident particle Z1  

 

PROBABILITY OF A PARTICLE 
SCATTERING BY AN ANGLE GREATER 

THAN θθ 

22
21 2

0

cot
8 2
Z Z e

f nt
K

  θ
= π  πε 

 

f = the probability (a value between 0 and 1) 

n = number of atoms per unit volume [m-3]  A M

g

N N
n

M
ρ

=  

where ρ is density [g/m3], NA is Avogadro's number, NM is the 
number of atoms per molecule, and MG is the gram-molecular 
weight [g/mole]. 

t = thickness of the target material [m] 

Z1 = atomic number of the incident particle 

Z2 = atomic number of the target particle 

e = q = electron charge [c] 

ε0 = permittivity of free space 8.85 × 10-12 F/m 

K = kinetic energy of the incident particle Z1  

θ = angle of particle Z1 deflection or scattering 

Alpha particle: Z=2 
Proton: Z=1 

 

ELECTRON VELOCITY 

This comes from the Bohr model and only applies to 
atoms and ions having a single electron. 

2

0 0

-dependent -dependent

1

4 2
n

e

n r

Ze e Z
v

n m r
= =

πε πεh14243 14243
 

v = electron velocity [m/s] 

Z = atomic number or number of protons in the nucleus 

e = q = electron charge [c] 

n = the electron orbit or shell  

ε0 = permittivity of free space 8.85 × 10-12 F/m 

me = mass of an electron 9.1093897×10-31 kg 

h  = Planck's constant divided by 2π  [J-s] 
r = the radius of the electron's orbit [m] 

 

ELECTRON ORBIT RADIUS 

This comes from the Bohr model and only applies to 
atoms and ions having a single electron. 

2 2
0

2

4
n

e

n
r

m Ze
πε

=
h

 

rn = electron orbit radius in the n shell [m] 
other variables are previously defined 

 

ar  RADIAL ACCELERATION 

ar = the radial acceleration of an orbiting 
electron  [m/s2] 

v = tangential velocity of the electron  [m/s] 

r = electron orbit radius  [m] 

2

r

v
a

r
=  
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R∞∞  RYDBERG CONSTANT 

R∞ is used in the Bohr model and is a close 
approximation assuming an infinite nuclear mass.  R 
is the adjusted value.  These values are appropriate 
for hydrogen and single-electron ions. 

( )

2 4

23
04 4

eZ e
R

c

µ
=

π πεh
    where  e

e
e

m M
m M

µ =
+

 

R∞ = Rydberg constant 1.09678×107 m-1 (1.096776×107 m-1 
for hydrogen) 

µe = adjusted electron mass 

Z = atomic number, or number of protons in the nucleus 

ε0 = permittivity of free space 8.85 × 10-12 F/m 

c = speed of light 2.998 × 108 m/s 
h  = Planck's constant divided by 2π  [J-s] 
me = mass of an electron 9.1093897×10-31 kg 

M = mass of the nucleus (essentially the same as the 
mass of the atom ⇒ atomic number × 1.6605×10-27)  [kg] 

 

Lαα  MOSELEY'S EQUATION 

British physicist, Henry Moseley determined this 
equation experimentally for the frequency of Lα x-
rays. Lαα waves are produced by an electron decaying 
from the n=3 orbit to the n=2 or L orbit. 

( )25
7.4

36L cR Z
α

ν = −  

ν = (nu) frequency [Hz] 
c = speed of light 2.998 × 108 m/s 
R = Adjusted Rydberg constant (see above) [m-1] 

Z = atomic number or number of protons in the nucleus 

 

SPECTRAL LINES 

This formula gives the wavelength of light emitted 
when an electron in a single-electron atom or ion 
decays from orbit nu to nl. 

2
2 2

1 1 1

l u

Z R
n n

 
= − 

λ  
 

λ = wavelength [m] 

Z = atomic number or number of protons in the nucleus 

R = Rydberg constant (1.096776×107 m-1 for hydrogen) 

nl = the lower electron orbit number 

nu = the upper electron orbit number 

 

BRAGG'S LAW 

X-ray Scattering - X-rays reflected from a crystal 
experience interference effects since rays reflecting 
from the interior of the material take a longer path 
than those reflecting from the surface.  Compare to 
ELECTRON SCATTERING below. 

2 sinn dλ = θ  d

θ

sin θd2

sind θ  
n = order of reflection (number of lattice planes in depth) 

λ = wavelength of the incident wave [m] 

d = distance between lattice planes (interatomic spacing 
in this case) [m] 

θ = angle of incidence; the angle between the incident 
wave and the surface of the material 

 

ELECTRON SCATTERING 

Electrons directed into a crystalline material are 
scattered (reflected) at various angles depending on 
the arrangement of lattice planes.  There is more 
than one set of lattice planes in a crystal.  The 
technique can be used to explore the characteristics 
of a material.  Compare to BRAGG'S LAW above. 

sinn Dλ = φ  

α α
φ

θ

d
D

 
n = order of reflection (number of lattice planes in depth) 

λ = wavelength of the incident wave [m] 

D = interatomic spacing [m] 

d = distance between lattice planes [m] 

φ = angle between the incident and reflected waves 
 

K  CLASSICAL KINETIC ENERGY 

Two expressions for kinetic energy: 
2 3

2 2

p
K kT

m
= =  

lead to a momentum-temperature relation for 
particles: 

2 3p mkT=  

p = momentum [kg-m/s] 

m = particle mass [kg] 

K = kinetic energy [J] 

k = Boltzmann's constant 1.380658×10-23 J/K 

T = temperature in Kelvin (273.15K = 0°C, ∆K = ∆C) 

(see page 5 for RELATIVISTIC KINETIC ENERGY) 
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WAVES 
 

ΨΨ   WAVE FUNCTIONS 

Classical Wave Equation  
We did not use this equation: 

2 2

2 2 2

1

x v t
∂ Ψ ∂ Ψ

=
∂ ∂

 

This wave function fits the classical form, but is not 
a solution to the Schröedinger equation: 

sin(

wave
wave

number
phase

constant

(    )x,t

time

Ψ =A ω

angular
frequency

kx - t + φ)

distance distance time

The negative sign denotes wave 
motion in the positive x direction, 
assuming omega is positive.

amplitude

 

More general wave functions which are solutions to 
the Schröedinger equation are: 

ωkx - t) + i sin( ωkx - t)]

wave
number

distance timedistance

amplitude The negative sign denotes wave 
motion in the positive x direction, 
assuming omega is positive.

(    )x,t

wave

Ψ

time

= Ae =

angular
frequency

ωi(kx- t) [cos(A

 
 

k   WAVE NUMBER 

A component of a wave function 
representing the wave density relative to 
distance, in units of radians per unit 
distance [rad/m]. 

2
k

π
=

λ
 

 

ωω   ANGULAR FREQUENCY 

A component of a wave function 
representing the wave density relative to 
time (better known as frequency), in units 
of radians per second [rad/s]. 

2
T
π

ω =  

 

vph   PHASE VELOCITY 

The velocity of a point on a wave, 
e.g. the velocity of a wave peak 
[m/s]. 

phv
T k
λ ω

= =  

 

φφ   PHASE CONSTANT 

The angle by which the wave is offset from zero, i.e. 
the angle by which the wave's zero amplitude point is 
offset from t=0. [radians or degrees]. 

 

ΨΨ   SUM OF TWO WAVES 
(see also WaveSummingExample.pdf) 

( )1 2 av av

internal wave
envelope

2 cos cos
2 2
k

A x t k x t
∆ ∆ω Ψ + Ψ = − − ω 

  1442443144424443
 

A = harmonic amplitude [various units?] 

∆k = difference in wave numbers  k1 - k2  [rad/m] 

kav = average wave number  (k1 + k2)/2  [rad/m] 
∆ω = difference in angular 

frequencies  ω1 - ω2  
[rad/s] 

ωav = average angular 
frequency  (ω1 + ω2)/2  
[rad/s] 

x = distance [m] 

t = time [s]  
Phase Velocity: 

ph av av/v k= ω    
[m/s] velocity of a point on a wave 

Group Velocity:   

gr /u k= ∆ω ∆  
[m/s] speed of the envelope 

 

λλ   de BROGLIE WAVELENGTH 

De Broglie extended the concept of 
waves to all matter. 

h
p

λ =  

λ = wavelength [m] 

h = Planck's constant 6.6260755×10-34 J-s 

p = momentum [kg-m/s], convertible to [eV/c] by multiplying 
by c/q. 

 

WAVE UNCERTAINTIES 

This has to do with the effects of combining different 
waves.  In order to know precisely the position of the 
wave packet envelope (∆x small), we must have a 
large range of wave numbers (∆k large).  In order to 
know precisely when the wave is at a given point (∆t 
small), we must have a large range of frequencies 
(∆ω large).  Another result of this relationship, is that 
an electronic component must have a large bandwidth 
∆ω in order for its signal to respond in a short time ∆t.  

2k x∆ ∆ = π  2t∆ω∆ = π  

∆k = the range of wave numbers, see WAVE NUMBER 

∆x = the width of the wave envelope 

∆ω = the range of wave frequencies 

∆t = a time interval 
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SCHRÖDINGER'S WAVE EQUATION 

time-dependent form: 

( ) ( ) ( )22

2

, ,
,

2

K U E

x t x t
V x t i

m x t

+ =

∂ Ψ ∂Ψ
− + Ψ =

∂ ∂
h h  

time-independent form: 

( ) ( ) ( ) ( )
22

22

d x
V x x E x

m dx

ψ
− + ψ = ψ

h
 

or    
( )

( ) ( )
22

22

d x
E V x

m x dx

ψ
− = −

ψ
h

 

h  = Planck's constant divided by 2π  [J-s] 
Ψ(x,t) = wave function 

V = voltage; can be a function of space and time (x,t) 
m = mass [kg] 

Two separate solutions to the time-independent 
equation have the form: 

 
ikx ikxAe Be−+       where ( )2 /k m E V= − h  

or ( ) ( )sin cosA kx B kx+  

Note that the wave number k is consistent in both 
solutions, but that the constants A and B are not 
consistent from one solution to the other.  The values 
of constants A and B will be determined from 
boundary conditions and will also depend on which 
solution is chosen. 

 

PROBABILITY 

A probability is a value from zero to one.  The 
probability may be found by the following steps: 

Multiply the function by its complex conjugate and 
take the integral from negative infinity to positive 
infinity with respect to the variable in question, 
multiply all this by the square of a constant c and set 
equal to one. 

2 * 1c F F dx
∞

−∞
=∫  

Solve for the probability constant c. 

The probability from x1 to x1 is:  
2

1

2 *
x

x
P c F F dx= ∫  

 

PROBABILITY OF LOCATION 

Given the wave function:  ( ),x tψ  

find the probability that a particle is located between 
x1 and x2. 

Normalize the wave function:  2 2

0
2 1A dx

∞
ψ =∫  

with A known, find the probability:  
2

1

2 2x

x
P A dx= ψ∫  

 

〈〈x〉, 〈〉, 〈x2〉〉   EXPECTATION VALUES 

average value: 

( ) ( )*x x x x dx
∞

−∞
= ψ ψ∫  

average x2 value: 

( ) ( )2 2*x x x x dx
∞

−∞
= ψ ψ∫  

 

p̂    MOMENTUM OPERATOR 

An operator transforms one function into another 
function.  The momentum operator is: 

ˆ
d

p i
dx

= − h  

For example, to find the average momentum of a 
particle described by wave function ψ: 

ˆ* *
d

p p dx i dx
dx

∞ ∞

−∞ −∞

 = ψ ψ = ψ − ψ 
 ∫ ∫ h  
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SIMPLE HARMONIC MOTION 

Examples of simple harmonic motion include a mass 
on a spring and a pendulum.  The average potential 
energy equals the average kinetic energy equals half 
of the total energy.  In simple harmonic motion, k is 
the spring constant, not the wave number. 

spring constant k: 
k
m

ω =  force: F kx=  

potential energy V: 21
2

V kx=  

Schrödinger Wave Equation 
for simple harmonic motion: ( )

2
2 2

2

d
x

dx
ψ

= α −β ψ  

where 2
2

mk
α = h  and 

2

2mE
β = h  

The wave equation solutions 
are: ( ) 2 / 2x

n nH x e−αψ =  

where Hn(x) are polynomials of order n, where 
n = 0,1,2,· · · and x is the variable taken to the power of n.  
The functions Hn(x) are related by a constant to the Hermite 
polynomial functions. 

2
1/4

/ 2
0

xe−αα ψ =  π 
  

2
1/4

/ 2
1 2 xxe−αα ψ = α π 

 

( ) 2
1/4

2 / 2
2

1
2 1

2
xx e−αα ψ = α − π 

 

( )( ) 2
1/4

2 / 2
3

1
2 3

3
xx x e−αα ψ = α α − π 

 

…and they call this simple! 

quantized energy levels: 1

2nE n = + ω 
 

h  

The zero-point energy, or Heisenberg 
limit is the minimum energy allowed by 
the uncertainty principle; the energy at 
n=0: 

0

1
2

E = ωh  

 

HEISENBERG UNCERTAINTY PRINCIPLE 

These relations apply to Gaussian wave packets.  
They describe the limits in determining the factors 
below. 

/ 2xp x∆ ∆ ≥ h  / 2E t∆ ∆ ≥ h  

∆px = the uncertainty in the momentum along the x-axis 

∆x = the uncertainty of location along the x-axis 

∆E = the uncertainty of the energy 

∆t = the uncertainty of time.  This also happens to be the 
particle lifetime.  Particles you can measure the mass 
of (E=mc2) have a long lifetime. 

 

INFINITE SQUARE-WELL POTENTIAL 
or "Particle in a Box" 

This is a concept that applies to 
many physical situations.  
Consider a two-dimensional box 
in which a particle may be 
trapped by an infinite voltage 
potential on either side.  The 
problem is an application of the 
Schrödinger Wave Equation. 

x
0 L

x(  )V

 
The particle may have various energies represented by 
waves that must have an amplitude of zero at each 
boundary 0 and L.  Thus, the energies are quantized.  The 
probability of the particle's location is also expressed by a 
wave function with zero values at the boundaries. 

Wave function: ( ) sinn

n x
x A

L
π ψ =  

 
 

Energy levels: 
2 2

2
22nE n

mL
π

=
h

 

Probability of a particle being 
found between x1 and x2: 

2

1

*
x

x x
P dx

=
= Ψ Ψ∫  

A = 2

L
 normalization constant 

a useful identity:  ( )2 1
sin 1 cos 2

2
θ = − θ  
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POTENTIAL BARRIER 

When a particle of energy E 
encounters a barrier of 
potential V0, there is a 
possibility of either a 
reflected wave or a 
transmitted wave. 

x
0 L

Region I Region IIIRegion II

x(  )V

particle

0V

 
for E > V0: 

kinetic energy: 0K E V= −  

wave number: 2 /I IIIk k mE= = h  

 ( )02 /IIk m E V= − h  

incident wave: Iik x
I Aeϕ =  

reflected wave: Iik x
I Be−ϕ =  

transmitted wave: Ik x
III Feϕ =  

trans. probability: 
( )

( )

12 2
0

0

sin
1

4
IIV k L

T
E E V

−
 

= +  − 
 

reflection probability: 1R T= −  

for E < V0:  Classically, it is not possible for a particle 
of energy E to cross a greater potential V0, but 
there is a quantum mechanical possibility for this 
to happen called tunneling. 

kinetic energy: 0K V E= −  

wave #, region II: ( )02 /m V Eκ = − h  

trans. probability: 
( )

( )

12 2
0

0

sinh
1

4

V L
T

E V E

−
 κ

= +  − 
 

when 1Lκ ? : 2

0 0

16 1 LE E
T e

V V
− κ 

= − 
 

 

 

3D INFINITE POTENTIAL BOX 

Consider a three-dimensional box 
with zero voltage potential inside 
the box and infinite voltage outside.  
A particle trapped in the box is 
described by a wave function and 
has quantized energy levels. 

z

0 L1

L3

L2

y

x

 
Time-independent Schrödinger Wave Equation in three 
dimensions: 

2 2 2 2

2 2 22
V E

m x y z

 ∂ ψ ∂ ψ ∂ ψ
− + + + ψ = ψ ∂ ∂ ∂ 

h
 

Wave equation for the 3D infinite potential box: 

1 2 3

31 2

1 2 3

sin sin sinn n n

n zn x n y
A

L L L

     ππ π
ψ =     

     
 

Energy levels: 
1 2 3

22 2 2 2
31 2

2 2 2
1 2 32n n n

nn n
E

m L L L

 π
= + + 

 

h
 

Degenerate energy levels may exist—that is, different 
combinations of n-values may produce equal energy 
values. 
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SCHRÖDINGER'S EQUATION – 3D 
SPHERICAL 

spherical coordinate form: 

( )
2

2
2 2 2 2 2 2

1 1 1 2
sin 0

sin sin
m

r E V
r r r r r

∂ ∂ψ ∂ ∂ψ ∂ ψ   + θ + + − ψ=   ∂ ∂ θ∂θ ∂θ θ ∂θ    h
 

separation of variables using:  ( ) ( ) ( ) ( ), ,r R r f gΨ θ φ = θ φ  

We can obtain a form with terms of g on one side and 
terms of R and f on the other.  These are set equal to 
the constant ml

2.  ml turns out to be an integer.  
Another seperation is performed for R and f and the 
constant is l(l+1), where l is an integer.  The three 
equations are: 

Azimuthal equation: 
2

2

2

1
0 lim

l

d g
m g Ae

g d
φ+ = ⇒ =

φ
 

Radial equation: 

( ) ( )2
2 2 2

11 2
0

l ld dR m
r E V R R

r dr dr r

+  + − − = 
  h  

Angular Equation: 

( )
2

2

1
sin 1 0

sin sin
lmd df

l l f
d d

  θ + + − =  θ θ θ θ   
 

ml = magnetic quantum number; integers ranging from –l 
to +l 

l = orbital angular momentum quantum number 

h  = Planck's constant divided by 2π  [J-s] 
E = energy 

V = voltage; can be a function of space and time (x,t) 
m = mass [kg] 

 

NORMALIZING WAVE FUNCTIONS 

To normalize a function, multiply the function by its 
complex conjugate and by the square of the 
normalization constant A.  Integrate the result from 
-∞ to ∞ and set equal to 1 to find the value of A.  The 
normalized function is the original function multiplied 
by A. 

To normalize the wave function ΨΨ(x): 

 
2

A dx
∞

−∞
Ψ∫  → 2 2A dx

∞

−∞
Ψ∫  

Where Ψ is an even function, we can simplify to: 

 2 2

0
2A dx

∞
Ψ∫   and find A:  2 2

0
2 1A dx

∞
Ψ =∫  

Some relations for definite integrals will be useful in solving 
this equation; see CalculusSummary.pdf page 3. 

To normalize the wave function ΨΨ(r), where r is the radius 
in spherical coordinates: 

 
2

2

0
r A dr

∞
Ψ∫  → 2 2 2

0
1A r dr

∞
Ψ =∫  

Note that we integrate from 0 to ∞ since r has no negative 
values. 

To normalize the wave function ΨΨ(r,θθ,φφ): 

 
222 2

0 0 0
sin 1A dr r A d d

∞ π π
Ψ θ θ φ =∫ ∫ ∫  

Note that dr, dθ, and dφ are moved to the front of their 
respective integrals for clarity. 

 

Rnl(r)  RADIAL WAVE FUNCTIONS 
for the hydrogen atom 

n l Rnl(r) 

1 0 
0/

3 /2
0

2 r ae
a

−  

2 0 
( )

0/ 2

3 /2
0 02

r ar e
w

a a

− 
− 

 
 

2 1 
( )

0/ 2

3 /2
0 03 2

r ar e
a a

−

 

3 0 
( )

0

2
/3

3/2 2
0 00

1 2
27 18 2

81 3
r ar r

e
a aa

− 
− + 

 
 

3 1 
( )

0/3
3 /2

0 00

1 4
6

81 6
r ar r

e
a aa

− 
− 

 
 

3 2 
( )

0

2
/3

3/2 2
00

1 4

81 30
r ar

e
aa

−  

a0 = Bohr radius 5.29177×10-11 m 
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P(r)dr  RADIAL PROBABILITY 

The radial probability is a value from 0 to 1 indicating 
the probability of a particle occupying a certain area 
radially distant from the center of orbit.  The value is 
found by integrating the right-hand side of the 
expression over the interval in question: 

( ) 22( )P r dr r R r dr=  

r = orbit radius  

R(r) = radial wave function, normalized to unity 

 

P(r)  RADIAL PROBABILITY DENSITY 

The radial probability density depends only on n and l. 

( ) 22( )P r r R r=  

r = orbit radius  

R(r) = radial wave function, normalized to unity 

 

〈〈r〉〉   RADIAL EXPECTATION VALUE 

average radius (radial wave function): 

( ) ( )3

0 0r r
r r P r dr r R r dr

∞ ∞

= =
= =∫ ∫  

P(r) = probability distribution function  ( ) ( ) 22P r r R r dr=  

R(r) = radial wave function, normalized to unity 

 
 

ATOMS 
 

QUANTUM NUMBERS 

n = principal quantum number, shell number, may have 
values of 1, 2, 3, …  

l = orbital angular momentum quantum number, 
subshell number, may have values of 0 to n-1.  These 
values are sometimes expressed as letters:  s=0, p=1, 
d=2, f=3, g=4, h=5, … 

ml = magnetic quantum number, may have integer values 
from -l to +l for each l.  (p251) 

ms = magnetic spin quantum number, may have values 
of +½  or -½   

Then we introduce these new ones: 
s = intrinsic quantum number, s =1/2  (p238) 

j = total angular momentum quantum number, j = l ± s, 
but j is not less than 0.  (p257) 

mj = magnetic angular momentum quantum number, 
may have values from -j to +j   (p257) 

Example, for n = 3: 

 l = 0 1 2 

 j = 1/2 1/2 3/2 3/2 5/2 

 mj =  -1/2 +1/2 -1/2 +1/2 -3/2 -1/2 
+1/2 +3/2 

-3/2 -1/2 +1/2 +3/2 -5/2 -3/2 -1/2  
+1/2 +3/2 +5/2 

 ml = 0 -1 0 +1 -2 -1 0 +1 +2 

 ms = -1/2 
+1/2 

-1/2 
+1/2 

-1/2 
+1/2 

-1/2 
+1/2 

-1/2 
+1/2 

-1/2 
+1/2 

-1/2 
+1/2 

-1/2 
+1/2 

-1/2 
+1/2 

 

L  ORBITAL ANGULAR MOMENTUM 

Classically, orbital angular momentum is ρρr or mvr. 
The orbital angular momentum L is a vector quantity.  
It components are as follows: 

Magnitude: ( )1L l l= +h  

Z-axis value: z lL m= h  

The values of Lx and Ly cannot be determined exactly but 
obey the following relation: 

2 2 2 2
x y zL L L L= + +  

h  = Planck's constant divided by 2π  [J-s] 
l = orbital angular momentum quantum number 

ml = magnetic quantum number; integers ranging from –l 
to +l 

The orbital angular momentum quantum 
number was originally given letter values 
resulting from early visual observations: 
sharp, principal, diffuse, fundamental 

l = 0 1 2 3 4 5 
 s p d f g h 
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S  SPIN ANGULAR MOMENTUM 

The spin angular momentum is (insert some 
illuminating explanation here). 

Magnitude:

 ( )1 3 / 4s s= + =S h h  

z component: 

 / 2z sS m= = ±h h  

 
- h1

2

h1
+ 2

=     3/4hS

z

 

 

J  TOTAL ANGULAR MOMENTUM 

The vector sum of the orbital angular momentum and 
the spin angular momentum.  This applies to 1-
electron and many-electron atoms. 

= +J L S  

J (the magnitude?) is an integer value from |L-S| to L+S. 

 

ALLOWED TRANSITIONS 

The allowed energy level transitions for 1-electron 
atoms are 

  ∆n:  any ∆l:  ±1 ∆mj:  0, ±1 ∆j:  0, ±1 

 

ZEEMAN SPLITTING ("ZAY· mahn") 

When a single-electron atom is under the influence of 
an external magnetic field (taken to be in the z-axis 
direction), each energy level (n=1,2,3,…) is split into 
multiple levels, one for each quantum number ml.  
The difference in energy is: 

B lE Bm∆ = µ  

∆E = difference in energy between two energy levels [J] 
µB = Bohr magneton 9.274078×10-24 J/T 

B = magnetic field [T] 
ml = magnetic quantum number; integers ranging from –l 

to +l 

 

µµ  MAGNETIC MOMENT 

Both the magnetic moment µµ and the orbital angular 
momentum L are vectors: 

2
e
m

= −ì L  

m = mass of the orbiting particle [kg] 

 
 

MANY-ELECTRON ATOMS 
 

SPECTROSCOPIC SYMBOLS 

The energy state of an atom having 1 or 2 electrons 
in its outer shell can be represented in the form 

2 1S
jn L+  

n = shell number  

S = intrinsic spin angular momentum quantum number; ½ 
for a single-electron shell, 0 or 1 (S1 + S2) for the 2-
electron shell 

L = angular momentum quantum number; l for single-
electron shell, L1 + L2 for a 2-electron shell, expressed 
as a capital letter: S=0, P=1, D=2, F=3, G=4, H=5, I=6. 

j = total angular momentum quantum number j = l ± s. I'm 
not sure how to tell whether it's plus or minus, but I 
think it has to be the lower value of j to be in the 
ground state.  j is positive only. 

 

ORDER OF ELECTRON FILLING 
Here's a way to remember the order in which the 
outer shells of atoms are filled by electrons: 

Form groups of l-numbers like this.  The first 
group is just the lowest value for l: s. The next 
value of l is p; form a new group of p with s.  
The third value of l is d; form the third group 
with d, p, and s.  You get a list of groups like 
this: 

s 
p s 

d p s 
f d p s 

g f d p s 
h g f d p s 

Now, in a column, write each group twice 
beginning with the single s that is the first 
group. 

Next number each s beginning with 1, placing 
the number in front of the s.  This is as far as 
I have gone with the list at right. 

The next step is to number each p beginning 
with the number 2. 

Then number each d beginning with the 
number 3. 

Number each f beginning with 4, and so on. 

The result will be the order of filling (there are 
a few exceptions) and will look like this: 

1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 
and so on. 

1s 
2s 
p 

3s 
p 

4s 
d 
p 

5s 
f 
d 
p 

6s 
f 
d 
p 

7s 
and so on. 
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g  LANDÉ g FACTOR 

A dimensionless number that helps make physics 
complicated.  Used in ANOMALOUS ZEEMAN 
SPLITTING 

( ) ( ) ( )
( )

1 1 1
1

2 1

J J S S L L
g

J J

+ + + − +
= +

+
 

 

ALLOWED PHOTON TRANSITIONS 

The allowed photon energy level transitions for many-
electron atoms are 

  ∆L:  ±1 ∆J:  0, ±1,   but J can't transition from 0 to 0. 

  ∆S:  0 ∆mj:  0, ±1,   but can't transition from 0 to 0 
when ∆J=0. 

Other transitions are possible—just not likely. 

 

θθ  MINIMUM ANGLE BETWEEN J AND 
THE Z-AXIS 

There were exercises where we had to calculate this.  
I don't know what the significance is.  This is done 
similarly for L and S as well. 

Example: 
5
2

j =  

( )
cos

1

j

j j

×
θ =

+

h
h

  → 

( )
2

2cos
1

j
j j

θ =
+

→  
( )

2cos
1

j
j

θ =
+

 

cos
1

j
j

θ =
+

 

h+ 2
5

h+ 2

h+ 2

3

1

h2
3-

h2
-

h2
-

1

5

z

=     j(j+1)hJθ

 

 

SPLITTING DUE TO SPIN 
For each state described by 
quantum numbers n, l, ml, there 
are two states defined by the 
magnetic spin numbers 
ms = ±1/2.  These two levels 
have the same energy except 
when the atom is influenced by 
an external magnetic field.   

- h1
2

h1
+ 2

=     3/4hS

z

 

The lower of the two energy levels is aligned with 
the magnetic field. 

2

hc
E∆ = ∆λ

λ
 

∆E = difference in energy between two (split) energy levels 
ms = ±1/2  [J]  

∆λ = difference in wavelengths for the transitions to the 
ground state for each energy level [m]  

λ = wavelength for the transitions to the ground state for 
the lower of the two energy levels (the greater of the 
two wavelengths) [m]  

h = Planck's constant 6.6260755×10-34 J-s 

c = speed of light 2.998 × 108 m/s 

 

SPIN-ORBIT ENERGY SPLITTING 

Spin-orbit energy splitting is the splitting of energy 
levels caused by an internal magnetic field due to 
spin.  This produces a greater ∆E than the spin 
splitting described above. p265 

P.E. due to spin ·sV = −ì B  

z-component  
2

z
z s

e

e J
g

m

 
µ = −  

 

h
h

 

energy level difference  s
e

e
E g B

m
∆ =

h
 

e = q = electron charge 1.6022×10-19 C 

h  = Planck's constant divided by 2π  [J-s] 
jz = z-component of the total angular momentum 

∆E = difference in energy between two (split) energy levels 
ms = ±1/2  [J]  

gs = 2, the gyromagnetic ratio 

me = mass of an electron 9.1093897×10-31 kg 

B = internal magnetic field [T] 
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ANOMALOUS ZEEMAN SPLITTING 
("ZAY· mahn") 

In addition to the Zeeman splitting of the ml energy 
levels described previously, and the spin-orbit energy 
splitting described above, there is a splitting of the mj 
levels when an external magnetic field is present.  
The difference in energy between levels is: 

extB jV B gm= µ  

V = difference in energy between two energy levels [J] 
µB = Bohr magneton 9.274078×10-24 J/T 

Bext = external magnetic field [T] 
g = Landé factor [no units] 
mj = magnetic angular momentum quantum number; half-

integers ranging from –j to +j 

 

STATISTICAL PHYSICS 
 

v*, v , vrms  MOLECULAR SPEEDS  [m/s] 

Maxwell speed 
distribution: ( )

21
224

mv
F v dv Ce v dv

− β
= π  

v*  most probable 
speed: 

2 2
*

kT
v

m m
= =

β
 

v   mean speed: 
4

2

kT
v

m
=

π
 

vrms  root mean 
square speed: 

1/2
2 3

rms

kT
v v

m
 = =   

v = velocity [m/s] 
C = normalization constant 

k = Boltzmann's constant 1.380658×10-23 J/K 

T = temperature [K] 
m = mass of the molecule [kg] 
β = the parameter 1/kT [J-1]  

 

ENERGY DISTRIBUTION 

Derived from Maxwell's speed distribution: 

( ) 1/2

3 /2

8

2
EC

F E e E
m

−βπ
=  

 

FMB  MAXWELL-BOLTZMANN FACTOR 

The Maxwell-Boltzmann factor is a value between 0 
and 1 representing the probability that an energy level 
E is occupied by an electron (at temperature T). This 
is for classical systems, such as ideal gases.  One 
way to determine if Maxwell-Boltzmann statistics are 
valid is to compare the de Broglie wavelength λ = h/p 
of a typical particle with the average interparticle 
spacing d.  If λ<<d then Maxwell-Boltzmann statistics 
are generally acceptable. 

E
MBF Ae−β=  

1/3
V

d
N

 =  
 

 

A = normalization constant 

β = the parameter 1/kT [J-1] 
d = space between atoms [m] 
N = number of particles in volume V.  Note that 

Avogadro's number, 6.022×1023, is the number of 
gas molecules in 22.4 liters, or 22.4×10-3 m3, at 0°C 
and 1 atmosphere.  Also, gas volume is proportional 
to temperature: V1/T1=V2/T2. 
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FFD  FERMI-DIRAC DISTRIBUTION 

A value between 0 and 1 indicating the probability 
than an energy state is occupied by an electron.  The 
Fermi-Dirac distribution is valid for fermions, 
particles with half-integer spins that obey the Pauli 
principle.  Atoms and molecules consisting of an even 
number of fermions must be considered bosons when 
taken as a whole because their total spin will be zero 
or an integer. 

1

1
1FD E

F
B eβ=

+
 

B1 = normalization constant 

β = the parameter 1/kT [J-1]  

 

FBE  BOSE-EINSTEIN DISTRIBUTION 

The Bose-Einstein distribution is valid for bosons, 
particles with zero or integer spins that do no obey 
the Pauli principle.  Photons, pions, and liquid 4He are 
bosons. 

2

1
1BE E

F
B eβ=

−
 

B2 = normalization constant 

β = the parameter 1/kT [J-1]  

 

EF  FERMI ENERGY  [eV] 
The Fermi energy depends on the density of electrons 
in the material.  The Fermi-Dirac distribution is 
modified to include the Fermi energy: 

( )
1

1F
FD E E

F
e β −  

=
+

 

The relationship between the Fermi energy and the 
number density of particles is: 

2/32

3

3

8F

h N
E

m L
 =  π 

 

FFD = Fermi-Dirac distribution, a value from 0 to 1 
indicating the probability that an energy state is 
occupied 

β = the parameter 1/kT [J-1] 
h = Planck's constant 6.6260755×10-34 J-s 

m = mass of the particle [kg] 
N/L3 = number density of the particles [m-3] 

 

TF  FERMI TEMPERATURE 

The Fermi temperature may be quite high, 80,000 K 
for copper. 

F
F

E
T

k
=  

EF = Fermi Energy [eV]  
k = Boltzmann's constant 1.380658×10-23 J/K 

 

uF  FERMI SPEED 

The Fermi speed,  
2 F

F

E
u

m
=  

comes from the definition:  
21

2F FE mu=  

EF = Fermi Energy [eV]  
m = mass (probably of the electron) [kg] 

 

ENERGY STATES IN "PHASE SPACE" 
The points in the 1/8 sphere represent the energy 
states of a particle in a cube, see 3D INFINITE 
POTENTIAL BOX p13. 

Energy level at radius r 
2

1E r E=  

where 2 2
1 / 8E h mL=  

(a constant equal to 1/3 of 
the ground state energy) 

and 2 2 2
1 2 3r n n n= + +  

and E is whatever energy 
the problem is concerned 
with. 

∆

energy
states

n1

3

3

11
2

2
1

3

r
2

integer
spacing

3n

energy
levels

n

r
2

 

Nr  Number of energy states in a sphere of radius r, 
i.e. the number of energy states there are with energy 
less than E: 

31 4
2

8 3rN r  = π  
  

  or  

3/2

13r

E
N

E

 π
=  

 
 

where the factor of 2 is due to spin degeneracy, and the 
factor of 1/8 is because the energy states only occupy 1/8 
of the sphere where n1, n2, n3 are all positive. 

 

g(E)  DENSITY OF ENERGY STATES 
Number of states per unit energy 

( ) 3/2 1/ 2
12

g E E E−π
=    ( ) r rN dN

g E
E dE

∆
= =

∆
 

Nr = number of energy states in a sphere of radius r  

E1 = a constant equal to 1/3 of the ground state energy  
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n(E)  DENSITY OF OCCUPIED STATES 
Number of occupied states per unit energy 

( ) ( )FDn E F g E= ⋅  

at T=0, ( ) ( ) ,  for 

0,          for 
F

F

g E E E
n E

E E

 <
= 

>
 

FFD = Fermi-Dirac distribution, a value from 0 to 1 
indicating the probability that an energy state is 
occupied 
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APPENDIX 
 

CONSTANTS 

Avogadro’s number  

 [molecules/mole] 236.0221367 10AN = ×  

Bohr magneton 249.27407836 10
2B

e

q
m

−µ = = ×
h  J/T 

Boltzmann’s constant 231.380658 10k −= ×  J/K 

 or 51062.8 −×=K  eV/K 

Earth to Moon distance 6384 10≈ ×  m 

Elementary charge 191060.1 −×=q  C 

Electron mass 319.1093897 10em −= ×  kg 

  0.51100em =  MeV/c2 

Neutron mass 271.6749 10neutronm −= ×  kg 

  939.57neutronm =  MeV/c2 

Proton mass 271.6726231 10pm −= ×  kg 

  938.27pm =  MeV/c2 

Permittivity of free space 12
0 8.8541878 10−ε = ×  F/m 

Planck’s constant 346.6260755 10h −= ×  J-s 

  151014.4 −×=  eV-s 

Rydberg constant 71.097373 10R = ×  m-1 

kT @ room temperature 0259.0=kT  eV 

Speed of light 82.998 10c = ×  m/s 

Speed of sound (air 0°C) 331.29sv =  m/s 

1 Å (angstrom) 10-8 cm = 10-10 M 

1 µm (micron) 10-4 cm 
1 nm = 10Å = 10-7 cm 273.15K = 0°C 
1 eV = 1.6 × 10-19 J 1 W = 1 J/S = 1 VA 
1 V = 1 J/C 1 N/C = 1 V/m 1 J = 1 N· m = 1 C· V 

 

UNITS 

Energy: Joules × 
1
q

 = eV 

Mass: Kg × 
2c

q
 = eV/c2 

Momentum: kg m

s

⋅  × 
c
q

 = eV
c

 

 

BINOMIAL EXPANSION 
For 1x < :  

( ) 2 3( 1) ( 1)( 2)
1 1

2! 3!
n n n n n n

x nx x x
− − −

± = ± + ± +L
 

When x is much less than 1:  ( )1 1
n

x nx± = ±  

 

WAVELENGTH SPECTRUM 
BAND METERS ANGSTROMS 

Longwave radio 1 - 100 km 1013 - 1015 

Standard Broadcast 100 - 1000 m 1012 - 1013 

Shortwave radio 10 - 100 m 1011 - 1012 
TV, FM 0.1 - 10 m 109 - 1011 

Microwave 1 - 100 mm 107 - 109 

Infrared light 0.8 - 1000 µm 8000 - 107 

Visible light 360 - 690 nm 3600 - 6900 
violet 360 nm 3600 
blue 430 nm 4300 
green 490 nm 4900 
yellow 560 nm 5600 
orange 600 nm 6000 
Red 690 nm 6900 

Ultraviolet light 10 - 390 nm 100 - 3900 
X-rays 5 - 10,000 pm 0.05 - 100 
Gamma rays 100 - 5000 fm 0.001 - 0.05 
Cosmic rays < 100 fm < 0.001 

 

GREEK ALPHABET 

Α α alpha Ι ι iota Ρ ρ rho 

Β β beta Κ κ kappa Σ σ sigma 

Χ χ chi Λ λ lambda Τ τ tau 

∆ δ delta Μ µ mu Υ υ upsilon 

Ε ε epsilon Ν ν nu Ω ω omega 

Φ φ phi Ο ο omicron Ξ ξ xi 

Γ γ gamma Π π pi Ψ ψ psi 

Η η eta Θ θ theta Ζ ζ zeta 
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TRIG IDENTITIES 

2sin ix ixi x e e−= −  

2cos ix ixx e e−= +  
 

2sinh x xx e e−= −  

2cosh x xx e e−= +  

cos sinixe x i x= +  

( )sin sin cos cos sinA B A B A B± = ±  

( )cos cos cos sin sinA B A B A B± = ∓  

sin sin 2sin cos
2 2

A B A B
A B

+ −   + =    
   

 

cos cos 2cos cos
2 2

A B A B
A B

+ −   + =    
   

 

 

GEOMETRY 
SPHERE 

Area 24 rA π=  

Volume 3

3
4

rV π=  

ELLIPSE 
Area ABA π=  

Circumference 

2
2

22 ba
L

+
π≈  

 

COORDINATE SYSTEMS 
Cartesian or Rectangular Coordinates: 

zyxr ˆˆˆ),,( zyxzyx ++=  x̂  is a unit vector 

222 zyx ++=r  

Spherical Coordinates: 

),,( φθrP  r is distance from center 

 θ is angle from vertical 
 φ is the CCW angle from the x-axis 

r̂ , è̂ , and φφ̂  are functions of position—their 

orientation depends on where they are located. 

Cylindrical Coordinates: 

),,( zr φC  r is distance from the vertical (z) axis 

 φ is the CCW angle from the x-axis 
 z is the vertical distance from origin 
 

 

COORDINATE TRANSFORMATIONS 
Rectangular to Cylindrical: 

To obtain: zr AAAzr zrA ˆˆˆ),,( ++=φ φφφ  

22 yxAr +=  φ+φ= sinˆcosˆˆ yxr  

x
y1tan −=φ  φ+φ−= cosˆsinˆˆ yxφφ  

zz =  zz ˆˆ =  
Cylindrical to Rectangular: 

To obtain: zyxr ˆˆˆ),,( zyxzyx ++=  

φ= cosrx  φ−φ= cosˆcosˆˆ φφrx  

φ= sinry  φ+φ= cosˆsinˆˆ yrφφ  

zz =  zz ˆˆ =  
Rectangular to Spherical: 

To obtain: φθ ++=φθ AAAr r φφ̂ˆˆ),,( èrA  

222 zyxAr ++=
θ+φθ+φθ= cosˆsinsinˆcossinˆˆ zyxr  

222

1cos

zyx

z

++
=θ

−

θ−φθ+φθ= sinˆsincosˆcoscosˆˆ zyxè  

x
y1tan −=φ  φ+φ−= cosˆsinˆˆ yxφφ  

Spherical to Rectangular: 

To obtain: zyxr ˆˆˆ),,( zyxzyx ++=  

φθ= cossinrx

φ−φθ−φθ= sinˆcoscosˆcossinˆˆ φφèrx  

φθ= sinsinry

φ+φθ+φθ= cosˆsincosˆsinsinˆˆ φφèry  

θ= cosrz  θ−θ= sinˆcosˆˆ èrz  
 

 
 


